TED (15)-	2003
(REVISION -	2015)

Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2018

ENGINEERING PHYSICS – II

(Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. What is meant by banking of roads?
 - Derive the relation between angular momentum and rotational kinetic energy.
 - What is a Polar satellite?
 - PART OF INIKULAM imum Distinguish between stimulated and spontaneous emission.
 - What is a moderator ?

 $(5 \times 2 = 10)$

(Maximum marks: 30)

- Answer any five of the following questions. Each question carries 6 marks.
 - 1. Derive an expression for the moment of inertia of a disc about
 - (a) an axis passing through the centre and perpendicular to its plane.
 - (b) about a diameter.
 - What is meant by centripetal Acceleration? Derive its expression.
 - Discuss the variation of acceleration due to gravity 'g' with altitude.
 - State and explain Kirchhoff's Laws.
 - Derive an expression for the magnetic field at the centre of a current carrying coil.
 - Give Einstein's explanation of Photoelectric effect.
 - Discuss the various forms of energy sources.

 $(5 \times 6 = 30)$

PART - C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT — I

(a) The rotor of a motor has a moment of inertia 15 kgm². Calculate the torque required to increase its speed of rotation from 320 rpm to 600 rpm in 4 seconds.

(b) Define radius of gyration. What is its SI unit? What is its value for a uniform disc of mass M and radius R, if the disc is rotating about an axis passing through the centre and perpendicular to its plane.

3

		Unit — III	Marks -
VII	(a)	Explain the principle of Shunt resistance.	3
	(b)	Describe a meter bridge. How it is used for the measurement of resistivity.	6
	(c)	Two cells of emf 12 V and 5 V and three resistances 2Ω , 3Ω and 4Ω are connected as Shown. Find the current i_1 , i_2 and 1 using Kirchhoff's laws.	
		12V T SAM E D SV OR	6
VIII	(a)		3
	(b)	Describe with necessary theory, the construction and working of a moving coil galvanometer.	6
ei Ră	(c)	How can a galvanometer be converted into a voltmeter? A galvanometer having a resistance 50Ω gives full scale deflection for 10 mA. With what resistance connected in scries, the galvanometer can be converted into a voltmeter of range 5V?	6.
THE .	220	Unit — IV	12
IX	-	Which are the main characteristics of laser radiation?	3
	(b)	With the help of a neat diagram, explain the working of He-Ne laser.	6
	(c)	What is meant by pumping? How this is achieved in solid and gas lasers? Write down the main applications of lasers.	6
		O _R	
Х	(a)	The threshold frequency for initiating photoelectric effect in a metal is 5×10^{14} Hz. Calculate the frequency of radiation that should be incident on this metal to get electrons of kinetic energy 3.15×10^{-19} J.	3
	(b)	What are the essential components of a nuclear reactor? Describe the functions of each component.	6
	(c)	A star derived its energy from the fusion of 4 protons to produce a helium nucleus and 2 positrons. Calculate the energy released in MeV if the masses of proton, helium and positron are respectively 1.00783u; 4.0026u and 0.00055u. Assume that 1u is equivalent to 931 MeV.	6