TED (15) -	4133
(REVISION -	2015)

Reg. No.	.,
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2018

DATA STRUCTURES

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - Compare linear and non-linear data structures.

 - List two fields or parts of a node of linked lists. KUI am

 Define degree of a tree.

 Define path and length of parts.

 - mvgmgE

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- Answer any five of the following questions. Each question carries 6 marks.
 - Write short notes on time complexity and space complexity.
 - 2. Explain about linked list. Write logic to insert an element at kth position.
 - 3. Write short notes on doubly and circular linked lists.
 - Describe about expression trees and threaded binary trees with simple example figures.
 - Write three cases to delete a node of BST.
 - Explain quick sort algorithm.
 - Explain adjacency matrix and adjacency list representations of graph with $(5 \times 6 = 30)$ an example.

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each question carries 15 marks.)

3.6		Unit — I	
Ш	(a)	Explain the algorithm of infix to postfix conversion using stack ADT.	. 9
	(b)	Explain about any three data structure operations.	6
		OR	
IV	(a)	Describe stack ADT algorithm with push() and pop() operations.	9
	(b)	Explain about priority queue and dequeue.	. 6
		Unit — II	
V	(a)	Describe the algorithm to implement queue using LinkedList ADT.	9
71	(b)	Explain about List ADT operations - find() and PrintList() using array.	6
2		OR OTT	
VI	(a)	Explain the algorithm to implement stack using LinkedList ADT.	9
	(b)	Explain algorithms for LinkedList ADT - insert last node and delete last node.	6
	200	UNITETII	
VII	(a)	Write algorithm to implement three tree traversals using BST ADT.	9
	(b)	Describe binary tree. Explain about linked representation of binary tree with example.	6
		OR	
VIII	(a)	Explain about BST. Write algorithm for insertion and find operations.	9
	(b)	Describe the terms related to tree - degree of a node, degree of a tree, siblings.	6
	-	Unit — IV	
IX.	(a)	Describe DFS and BFS graph traversals algorithms.	9
12	(b)	Explain binary search algorithm.	6
		O _R	
X	(a)	Explain about warshall's all-pair shortest path algorithm.	9
	(b)	Describe the terms related to graph - multi graph, sub graph, directed graph.	6